Structural rearrangements underlying K+-channel activation gating.

نویسندگان

  • E Perozo
  • D M Cortes
  • L G Cuello
چکیده

The intramembrane molecular events underlying activation gating in the Streptomyces K+ channel were investigated by site-directed spin-labeling methods and electron paramagnetic resonance spectroscopy. A comparison of the closed and open conformations of the channel revealed periodic changes in spin-label mobility and intersubunit spin-spin interaction consistent with rigid-body movements of the two transmembrane helices TM1 and TM2. These changes involve translations and counterclockwise rotations of both helices relative to the center of symmetry of the channel. The movement of TM2 increases the diameter of the permeation pathway along the point of convergence of the four subunits, thus opening the pore. Although the extracellular residues flanking the selectivity filter remained immobile during gating, small movements were detected at the C-terminal end of the pore helix, with possible implications to the gating mechanism.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Probing the Energy Landscape of Activation Gating of the Bacterial Potassium Channel KcsA

The bacterial potassium channel KcsA, which has been crystallized in several conformations, offers an ideal model to investigate activation gating of ion channels. In this study, essential dynamics simulations are applied to obtain insights into the transition pathways and the energy profile of KcsA pore gating. In agreement with previous hypotheses, our simulations reveal a two phasic activati...

متن کامل

Structural basis of two-stage voltage-dependent activation in K+ channels.

The structure of the voltage sensor and the detailed physical basis of voltage-dependent activation in ion channels have not been determined. We now have identified conserved molecular rearrangements underlying two major voltage-dependent conformational changes during activation of divergent K(+) channels, ether-à-go-go (eag) and Shaker. Two conserved arginines of the S4 voltage sensor move seq...

متن کامل

Voltage Clamp Fluorimetry Reveals a Novel Outer Pore Instability in a Mammalian Voltage-gated Potassium Channel

Voltage-gated potassium (Kv) channel gating involves complex structural rearrangements that regulate the ability of channels to conduct K(+) ions. Fluorescence-based approaches provide a powerful technique to directly report structural dynamics underlying these gating processes in Shaker Kv channels. Here, we apply voltage clamp fluorimetry, for the first time, to study voltage sensor motions i...

متن کامل

Mutation of glutamate 155 of the GABAA receptor beta2 subunit produces a spontaneously open channel: a trigger for channel activation.

Protein movements underlying ligand-gated ion channel activation are poorly understood. The binding of agonist initiates a series of conformational movements that ultimately lead to the opening of the ion channel pore. Although little is known about local movements within the GABA-binding site, a recent structural model of the GABA(A) receptor (GABA(A)R) ligand-binding domain predicts that beta...

متن کامل

The Cooperative Voltage Sensor Motion that Gates a Potassium Channel

The four arginine-rich S4 helices of a voltage-gated channel move outward through the membrane in response to depolarization, opening and closing gates to generate a transient ionic current. Coupling of voltage sensing to gating was originally thought to operate with the S4s moving independently from an inward/resting to an outward/activated conformation, so that when all four S4s are activated...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Science

دوره 285 5424  شماره 

صفحات  -

تاریخ انتشار 1999